Legacy Tree Logo
Contact Us
  • English
    • Auto
    • Spanish
    • Portuguese (Brazil)
    • Swedish
    • Danish
    • Norwegian Bokmål
    • Russian
Contact Us
  • Services
  • Highlights
  • About
  • Press
  • Blog
  • .
    • English
      • Auto
      • Spanish
      • Portuguese (Brazil)
      • Swedish
      • Danish
      • Norwegian Bokmål
      • Russian

Developing a DNA Testing Plan

September 11, 2017 by Paul - Legacy Tree Genealogists Researcher 3 Comments

developing a DNA testing planYou have taken your DNA test, and you have your ethnicity estimate, but how does genetic genealogy testing actually help you with your genealogy? Where do you even begin? By developing a DNA testing plan you can ensure that you pursue your research with a focused goal in mind, which will help determine how best to proceed.

Even though ethnicity estimates get a great deal of attention, the most genealogically valuable element of your DNA test results is the match list which connects you to others based on your shared DNA inheritance. As you begin working with your DNA test results within the context of your genealogy, we recommend sharing and collaborating with your genetic cousins. The main goal of your correspondence with genetic cousins might be to determine the nature of your relationship, but could also include sharing information regarding your shared heritage and ancestors, or requesting their help in recruiting additional relatives to test.

However, your match list may sometimes present problems of its own. If it includes several thousand individuals it might seem overwhelming. If you only have a handful of matches, it might be discouraging. In either case, there is no need to worry. Genetic genealogy tests are constantly changing as more people test. If you have too many matches, just focus on the closest ones. If you don’t have enough, the genetic cousins you need to make genealogical breakthroughs may not have tested yet. Waiting for the right cousins to test need not be a passive pursuit. Consider target testing your known relatives (or the known relatives of your matches) to better achieve your research goals.

Creating a DNA testing plan

In order to create a robust testing plan, you first need to have a specific research subject and a clear objective. Focus on a single ancestor. Make a goal of what you hope to discover through DNA testing. DNA testing is ideal for addressing questions regarding kinship, but is not as good for exploring motivations, biographical detail or uncovering ancestral stories. Once you have a research subject and objective, then you can evaluate which relatives will be the best candidates to test to thoroughly address your research problem.

In this post we will create an example DNA testing plan for John Martin who was adopted by a shopkeeper and his wife in the mid-1800s. We have few clues as to who his biological parents may have been. Our research subject is John Martin, and our stated objective is to determine the identities of his biological parents.

Understanding shared DNA

Because of the unique inheritance pattern of autosomal DNA, testing multiple relatives of a specific research subject can be extremely beneficial. Each individual inherits half of their autosomal DNA from each of their parents. Beyond that, the amount of DNA shared in common is only approximate due to a random process – called recombination – which shuffles the DNA each generation. Each individual will inherit about 25% from each grandparent, 12.5% from each great-grandparent and approximately half the previous amount for each subsequent generation. Although two first cousins will have both inherited 25% of their DNA from each of their common grandparents (50% in total) they will have inherited a different 25%. Therefore, first cousins will typically only share about 12.5% of their DNA in common. Because descendants along distinct lines inherit different portions of their common ancestors’ DNA, it is important to test as many people from distinct family lines as possible.

DNA testing and understanding shared DNA
Tip: Right click and ‘Save Image' to your computer to print this quick reference chart.

Don’t overlook the importance of traditional genealogy research!

Since it can be extremely beneficial to test multiple descendants of a research subject, before pursuing a detailed testing plan we recommend documenting as many descendants of an ancestor of interest as possible through traditional research. Though this process can be time consuming, it is often worth the effort. By tracing all descendants, you can accurately evaluate which genetic cousins will be best to invite to perform DNA testing. Additionally, tracing the descendants of ancestors can frequently lead to additional clues for extending ancestry. Just as different descendants inherit different DNA, they also inherit different information and historical documents regarding their ancestors. Some of that information could include clues regarding the very relationships you are trying to clarify. While searching for descendants of your ancestor of interest, consider utilizing compiled family histories, obituaries, city directories, family organizations and public records to identify living descendants.

In tracing the descendants of John Martin, we found that he had three children who lived to adulthood.  We traced each of their descendants through traditional research and identified 10 living relatives. Now that we know the identities of all his living descendants we can prioritize which relatives to test.

blue = deceased and grey = living

Who you decide to test as part of your research problem can be considered within the context of coverage. Coverage is the amount of an ancestor’s DNA that is represented in a DNA among all of their tested descendants. Coverage can be estimated by determining the amount of DNA that one descendant shares with a common ancestor, plus the DNA that another descendant shares with that same ancestor, minus the DNA that both descendants share in common with that ancestor. When two full siblings perform DNA testing, they obtain a coverage of about 75% of their parents’ DNA. Testing three full siblings results in about 87.5% coverage of their parents’ DNA.

Prioritize testing to achieve the highest level of coverage

To achieve the highest coverage of a research subject’s DNA, prioritize testing the closest generational descendants. A living granddaughter of a research subject will have inherited much more DNA from the ancestor of interest than a second great grandson. You can often find the closest generational descendants of a research subject by searching for the youngest child of the youngest child of each generation of their descendants. These individuals will typically have the longest generation times, and therefore have a greater likelihood of having close living descendants. Keep in mind that any DNA inherited from a common ancestor has to come through an individual’s immediate ancestors. If a granddaughter of a research subject is still living, and she in turn has descendants, any of the DNA that her children or grandchildren inherited from the research subject had to have come through her, and will be a subset of her own DNA. Therefore, if the granddaughter is tested, there is no need to test her descendants as well within the context of the research objective.

For example, in the case of John Martin, his granddaughter Maria is the closest living generational descendant. She will share much more DNA with John Martin than any of his other descendants. Also, any DNA that Maria’s descendants (Jennifer Jones or Matthew Williams) inherited from John Martin would be a subset of the DNA that Maria inherited from John. Therefore, if we were able to test Maria, we would not need to test Jennifer or Matthew.

Also, to achieve the highest coverage of DNA, we recommend testing descendants from unique lines. If a research subject had three children who lived to adulthood, rather than testing descendants of a single child consider testing descendants from each of the children. Testing only descendants of a single child limits the maximum coverage we can achieve, while testing descendants from each line enables maximum coverage. In this case, testing Maria, George, and Isaac or Julia would result in slightly higher coverage than testing Maria, Isaac, and Julia.

Other benefits of creating a DNA testing plan

So far, our discussion on testing plans has focused on the descendants of a research subject. However, it can also be beneficial to test other individuals as part of a research plan. Testing known relatives from other family lines can help to filter DNA test results. Any matches shared between a test subject and a known relative can be assigned to that side of the family. If there are proposed candidates who might be among the ancestors of the research subject, their descendants might be tested to prove or disprove hypotheses regarding their relationship. If, after testing, there are still very few genetic cousins, consider collaborating with those cousins to test their older relatives or representative family members from their various ancestral lines.

In this case, it has been proposed that John Martin was the son of a woman named Jessie Brown. Traditional research revealed that Jessie Brown had other living descendants who might be tested. Their test results could be used to confirm or refute the hypothesis of John’s relationship to Jessie. If their results confirm John and Jessie’s relationship, they could also be used to isolate which genetic cousins of the descendants of John Martin are likely related through the ancestry of John’s father. Finally, testing close known relatives from the other ancestral lines of each testing candidate could help to filter which genetic cousins are related through the ancestry of John Martin.

Since most researchers work within a limited research budget, developing a DNA testing plan can help prioritize which DNA test(s) should be performed first, and can help maximize the chances of successful resolution of research problems. Choose a research subject, define a clear objective, research their living descendants, prioritize DNA testing, and maximize your chances for genealogical discovery.

Do you have DNA test results and you’re not sure what to do or how to use them? Our genetic specialists can help you every step of the way–from developing a DNA testing plan, interpreting your DNA test results, organizing your genetic network and everything in between! Whatever your research question is, we would love to help you use your DNA results to find the answer. Contact us to discuss the options!

 

Filed Under: Adoption & Genetic Genealogy

About the Author

blank
Paul - Legacy Tree Genealogists Researcher
From a young age, Paul Woodbury fell in love with genealogy research. To pursue his passion for this field, he studied genetics and family history at Brigham Young University. To aid in his desire to share his knowledge with others, he has also received a masters degree in instructional design and educational technology from the University of Utah. Paul currently works as a DNA team lead at Legacy Tree Genealogists where he has helped to solve hundreds of genetic genealogy cases. In addition to genetic genealogy, Paul specializes in French, Spanish, and Scandinavian research and regularly presents on topics for these areas. is a graduate of Brigham Young University, where he studied genetics and family history. He specializes in genetic genealogy (DNA research), French, Spanish, Swedish and Norwegian genealogy research.

Comments

  1. SHARYN BAY says

    September 12, 2017 at 1:18 am

    I found the article to be extremely interesting and confusing at the same time.n One day I hope to have my DNA tested

    Reply
    • Amber Brown says

      September 12, 2017 at 1:38 am

      Thanks for the feedback, Sharyn! Advancements in DNA has certainly changed the genealogy research field, and oftentimes, can be overwhelming, even for experienced researchers. We invite you to check out the additional genetic genealogy articles on our blog, and hope you will find the information useful! Legacy Tree Genealogists Blog: Adoption & Genetic Genealogy.

      Reply
  2. Zara Foster says

    April 8, 2025 at 2:19 pm

    Yes Oki doke let’s do this Zara foster

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

REQUEST A FREE QUOTE

    Popular Posts

    Icelandic village

    4 Key Steps to Trace Your Icelandic-Canadian Ancestry

    December 31, 2024 By Rachel Whiting Leave a Comment

    How To Use Orthodox Baptismal Records for Genealogy Research

    November 13, 2024 By Linda - Researcher with Legacy Tree Genealogists 2 Comments

    Babies Left Behind: researching unknown G.I. fathers in the United Kingdom during WW2

    November 5, 2024 By Maggie - Legacy Tree Genealogists Research Team Manager 3 Comments

    How To Understand German Handwriting and Gothic Scripts

    July 2, 2024 By Keri - Legacy Tree Genealogists Researcher Leave a Comment

    Intro to German Genealogy: Practical Tips for Family History Research

    April 23, 2024 By Legacy Tree Genealogists 6 Comments

    Italian Heritage Travel: The My Bella Vita Experience

    April 9, 2024 By Legacy Tree Genealogists Leave a Comment

    German parish records

    3 Essential Websites for Exploring German Parish Records

    August 16, 2023 By Legacy Tree Genealogists 7 Comments

    CATEGORIES

    SEARCH

    NEWSLETTER

    • Home
    • Services
    • Highlights
    • About
    • Blog
    • Contact
    • FAQ
    • Careers
    How to Hire a Professional Genealogist
    Terms of Use Privacy Policy

    © 2004 - 2025 Legacy Tree Genealogists. All rights reserved.

    Cookie Consent

    This site uses cookies to enhance your experience. Consent allows us to track browsing data. Opting out may affect functionality.

    Functional Always active
    Storage or access necessary for enabling the use of services requested by the user, or for the sole purpose of communication over an electronic network.
    Preferences
    Storage or access necessary for the legitimate purpose of storing preferences that are not requested by the user.
    Statistics
    Storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
    Marketing
    Storage or access required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
    Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
    Preferences
    {title} {title} {title}
    Cookie Consent

    This site uses cookies to enhance your experience. Consent allows us to track browsing data. Opting out may affect functionality.

    Functional Always active
    Storage or access necessary for enabling the use of services requested by the user, or for the sole purpose of communication over an electronic network.
    Preferences
    Storage or access necessary for the legitimate purpose of storing preferences that are not requested by the user.
    Statistics
    Storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
    Marketing
    Storage or access required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
    Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
    Preferences
    {title} {title} {title}